snl
solves the sensor network problem with
partial distance (squared) matrix D, and anchor positions anchors, in
dimension d.
snl(D, d, anchors = NULL)
D | The partial distance matrix specifying the known distances between nodes. If anchors is specified (and is a pxr matrix), the p final columns and p final rows specify the distances between the anchors specified in anchors. |
---|---|
d | the dimension for the resulting completion |
anchors | a pxr matrix specifying the d dimensional locations of the p anchors. If the anchorless problem is to be solved, anchors = NULL |
X the d-dimensional positions of the localized sensors. Note that it may be the case that not all sensors could be localized, in which case X contains the positions of only the localized sensors.
Set anchors=NULL to solve the anchorless (Euclidean distance matrix completion) problem in dimension d.
NOTE: When anchors is specified, the distances between the anchors must be in the bottom right corner of the matrix D, and anchors must have d columns.
Nathan Krislock and Henry Wolkowicz. Explicit sensor network localization using semidefinite representations and facial reductions. SIAM Journal on Optimization, 20(5):2679-2708, 2010.
D <- matrix(c(0,NA,.1987,NA,.0595,NA,.0159,.2251,.0036,.0875, NA,0,.0481,NA,NA,.0515,NA,.2079,.2230,NA, .1987,.0481,0,NA,NA,.1158,NA,NA,.1553,NA, NA,NA,NA,0,NA,NA,NA,.2319,NA,NA, .0595,NA,NA,NA,0,NA,.1087,.0894,.0589,.0159, NA,.0515,.1158,NA,NA,0,NA,NA,NA,NA, .0159,NA,NA,NA,.1087,NA,0,.3497,.0311,.1139, .2251,.2079,NA,.2319,.0894,NA,.3497,0,.1918,.1607, .0036,.2230,.1553,NA,.0589,NA,.0311,.1918,0,.1012, .0875,NA,NA,NA,.0159,NA,.1139,.1607,.1012,0),nrow=10, byrow=TRUE) anchors <- matrix(c(.5131,.9326, .3183,.3742, .5392,.7524, .2213,.7631), nrow=4,byrow=TRUE) d <- 2 #Anchorless Problem edmc(D, method="snl", d=2, anchors=NULL)#> $X #> [,1] [,2] #> [1,] 0.016934663 0.048956965 #> [2,] -0.004757603 -0.030583106 #> [3,] -0.007601688 0.156167720 #> [4,] 0.007282167 -0.193730966 #> [5,] 0.041458581 0.027923602 #> [6,] -0.053316120 -0.008734216 #>#> $X #> [,1] [,2] #> [1,] 0.4359152 0.7483225 #> [2,] 0.3870077 0.6819505 #>