highDim.Rmd
Serial axes coordinate is a methodology for visualizing the \(p\)-dimensional geometry and multivariate data. As the name suggested, all axes are shown in serial. The axes can be a finite \(p\) space or transformed to an infinite space (e.g. Fourier transformation).
In the finite \(p\) space, all axes
can be displayed in parallel which is known as the parallel coordinate;
also, all axes can be displayed under a polar coordinate that is often
known as the radial coordinate or radar plot. In the infinite space, a
mathematical transformation is often applied. More details will be
explained in the sub-section Infinite axes
A point in Euclidean \(p\)-space \(R^p\) is represented as a polyline in serial axes coordinate, it is found that a point <–> line duality is induced in the Euclidean plane \(R^2\) (A. Inselberg and Dimsdale 1990).
Before we start, a couple of things should be noticed:
In the serial axes coordinate system, no x
or
y
(even group
) are required; but other
aesthetics, such as colour
, fill
,
size
, etc, are accommodated.
Layer geom_path
is used to draw the serial lines;
layer geom_histogram
, geom_quantiles
, and
geom_density
are used to draw the histograms, quantiles
(not quantile
regression) and densities. Users can
also customize their own layer (i.e. geom_boxplot
,
geom_violin
, etc) by editing function
add_serialaxes_layers
.
Suppose we are interested in the data set iris
. A
parallel coordinate chart can be created as followings:
library(ggmulti)
# parallel axes plot
ggplot(iris,
mapping = aes(
Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = factor(Species))) +
geom_path(alpha = 0.2) +
coord_serialaxes() -> p
p
A histogram layer can be displayed by adding layer
geom_histogram
p +
geom_histogram(alpha = 0.3,
mapping = aes(fill = factor(Species))) +
theme(axis.text.x = element_text(angle = 30, hjust = 0.7))
A density layer can be drawn by adding layer
geom_density
p +
geom_density(alpha = 0.3,
mapping = aes(fill = factor(Species)))
A parallel coordinate can be converted to radial coordinate by
setting axes.layout = "radial"
in function
coord_serialaxes
.
p$coordinates$axes.layout <- "radial"
p
Note that: layers, such as
geom_histogram
, geom_density
, etc, are not
implemented in the radial coordinate yet.
Andrews (1972) plot is a way to project multi-response observations into a function \(f(t)\), by defining \(f(t)\) as an inner product of the observed values of responses and orthonormal functions in \(t\)
\[f_{y_i}(t) = <\mathbf{y}_i, \mathbf{a}_t>\]
where \(\mathbf{y}_i\) is the \(i\)th responses and \(\mathbf{a}_t\) is the orthonormal functions under certain interval. Andrew suggests to use the Fourier transformation
\[\mathbf{a}_t = \{\frac{1}{\sqrt{2}}, \sin(t), \cos(t), \sin(2t), \cos(2t), ...\}\]
which are orthonormal on interval \((-\pi, \pi)\). In other word, we can project a \(p\) dimensional space to an infinite \((-\pi, \pi)\) space. The following figure illustrates how to construct an “Andrew’s plot”.
p <- ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species)) +
geom_path(alpha = 0.2,
stat = "dotProduct") +
coord_serialaxes()
p
A quantile layer can be displayed on top
p +
geom_quantiles(stat = "dotProduct",
quantiles = c(0.25, 0.5, 0.75),
linewidth = 2,
linetype = 2)
A couple of things should be noticed:
mapping aesthetics is used to define the \(p\) dimensional space, if not provided, all
columns in the dataset ‘iris’ will be transformed. An alternative way to
determine the \(p\) dimensional space
to set parameter axes.sequence
in each layer or in
coord_serialaxes
.
To construct a dot product serial axes plot, say Fourier
transformation, “Andrew’s plot”, we need to set the parameter
stat
in geom_path
to “dotProduct”. The default
transformation function is the Andrew’s (function andrews
).
Users can customize their own, for example, Tukey suggests the following
projected space
\[\mathbf{a}_t = \{\cos(t), \cos(\sqrt{2}t), \cos(\sqrt{3}t), \cos(\sqrt{5}t), ...\}\]
where \(t \in [0, k\pi]\) (Gnanadesikan 2011).
tukey <- function(p = 4, k = 50 * (p - 1), ...) {
t <- seq(0, p* base::pi, length.out = k)
seq_k <- seq(p)
values <- sapply(seq_k,
function(i) {
if(i == 1) return(cos(t))
if(i == 2) return(cos(sqrt(2) * t))
Fibonacci <- seq_k[i - 1] + seq_k[i - 2]
cos(sqrt(Fibonacci) * t)
})
list(
vector = t,
matrix = matrix(values, nrow = p, byrow = TRUE)
)
}
ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species)) +
geom_path(alpha = 0.2, stat = "dotProduct", transform = tukey) +
coord_serialaxes()
Note that: Tukey’s suggestion, element \(\mathbf{a}_t\) can “cover” more spheres in \(p\) dimensional space, but it is not orthonormal.
Rather than calling function coord_serialaxes
, an
alternative way to create a serial axes object is to add a
geom_serialaxes_...
object in our model.
For example, Figure 1 to 4 can be created by calling
g <- ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species))
g + geom_serialaxes(alpha = 0.2)
g +
geom_serialaxes(alpha = 0.2) +
geom_serialaxes_hist(mapping = aes(fill = Species), alpha = 0.2)
g +
geom_serialaxes(alpha = 0.2) +
geom_serialaxes_density(mapping = aes(fill = Species), alpha = 0.2)
# radial axes can be created by
# calling `coord_radial()`
# this is slightly different, check it out!
g +
geom_serialaxes(alpha = 0.2) +
geom_serialaxes(alpha = 0.2) +
coord_radial()
Figure 5 and 7 can be created by setting “stat” and “transform” in
geom_serialaxes
; to Figure 6,
geom_serialaxes_quantile
can be added to create a serial
axes quantile layer.
Some slight difference should be noticed here:
One benefit of calling coord_serialaxes
rather than
geom_serialaxes_...
is that coord_serialaxes
can accommodate duplicated axes in mapping aesthetics (e.g. Eulerian
path, Hamiltonian path, etc). However, in
geom_serialaxes_...
, duplicated axes will be
omitted.
Meaningful axes labels in coord_serialaxes
can be
created automatically, while in geom_serialaxes_...
, users
have to set axes labels by ggplot2::scale_x_continuous
or
ggplot2::scale_y_continuous
manually.
As we turn the serial axes into interactive graphics (via package
loon.ggplot),
serial axes lines in coord_serialaxes()
could be turned as
interactive but in geom_serialaxes_...
all objects are
static.
# The serial axes is `Sepal.Length`, `Sepal.Width`, `Sepal.Length`
# With meaningful labels
ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Sepal.Length = Sepal.Length)) +
geom_path() +
coord_serialaxes()
# The serial axes is `Sepal.Length`, `Sepal.Length`
# No meaningful labels
ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Sepal.Length = Sepal.Length)) +
geom_serialaxes()
Also, if the dimension of data is large, typing each variate in
mapping aesthetics is such a headache. Parameter
axes.sequence
is provided to determine the axes. For
example, a serialaxes
object can be created as
ggplot(iris) +
geom_path() +
coord_serialaxes(axes.sequence = colnames(iris)[-5])
At very end, please report bugs here. Enjoy the high dimensional visualization! “Don’t panic… Just do it in ‘serial’” (Alfred Inselberg 1999).